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A Poisson point process (Ppp) of intensity 1 is a random point set
ω in Rd such that for any measurable Ai ⊂ Rd , the number N(Ai )
of points in Ai satisfies:

N(Ai ) is independent for disjoint Ai ;

P[N(Ai ) = k] =
C ke−C

k!
, C = L(Ai ).

Note that this has an isometry-invariant distribution, i.e. N(A) has
the same distribution as N(g(A)) for any isometry g) .

We will need to condition on “0 ∈ ω”. Although this event has 0
probability, conditioning makes sense... This is the same as adding
an extra point to the origin:

P[ω ∈ A | 0 ∈ ω] = P[ω ∪ {0} ∈ A] =: P0[A]
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Perfectly matching two Ppp’s

Given are two independent P.p.p’s in Rd . Match them so that
everybody finds a pair.

Pairs should find each other using the same, local rule. The pair of
a point x ∈ ω can be determined from a large neighborhood of x
up to a small error, as a measurable function of the neighborhood.

More formally:
Find a function that almost surely defines a perfect matching and
is

equivariant (commutes with the isometries of Rd),

measurable.

The resulting matching is called a factor matching.
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An example: “Stable marriage”

If a blue and a red point are mutually closest to each other, match
them.
Remove these pairs, and repeat the procedure for the remaining.

This is a factor matching. Holroyd and Peres have shown that in
the limit every point gets matched this way.

This is a stable matching scheme: one cannot find a red and a blue
point such that they are closer to each other than to their current
pairs.

It can be considered as an adaptation of the Gale and Shapley
algorithm .
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Our main question

What is the optimal tail one can obtain for the factor matching
problem?

Question (Holroyd-Pemantle-Peres-Schramm, ’07) Find a factor
matching where P0[X > r ] decays as fast as possible. Here X is
the distance of the origin from its pair.

Stable matching is very far from optimal. (How sad...)
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A trivial bound shows that the tail cannot be thinner than
c0 exp(−crd).

Theorem

For d = 1, 2, the fastest possible decay is P0[X > r ] < cr−d/2 up
to the constant c, and there is a matching rule that has this tail.
Here X is the distance of the origin from its pair.

Holroyd-Peres, ’05; Meshalkin, ’59; T., ’08

From dimension 3, there is a drastic change in the behavior:

Theorem

(T., ’08) Let d ≥ 3. Then there is a matching factor such that
P0[X > r ] < c0 exp(−crd−2−ϵ) for any ϵ > 0.

From now on, we assume d ≥ 3.

Ádám Timár Poisson factor matchings of optimal tail via matchings in graphings



A trivial bound shows that the tail cannot be thinner than
c0 exp(−crd).

Theorem

For d = 1, 2, the fastest possible decay is P0[X > r ] < cr−d/2 up
to the constant c, and there is a matching rule that has this tail.
Here X is the distance of the origin from its pair.

Holroyd-Peres, ’05; Meshalkin, ’59; T., ’08

From dimension 3, there is a drastic change in the behavior:

Theorem

(T., ’08) Let d ≥ 3. Then there is a matching factor such that
P0[X > r ] < c0 exp(−crd−2−ϵ) for any ϵ > 0.

From now on, we assume d ≥ 3.
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Land division problem (allocation)

Farmers are distributed in the plane (or Rd) according to P.p.p.
Partition the world into parts of equal area, and assign these to the
farmers. Use some “local” rule, and no central planning.

Math problem: Given P.p.p. with intensity 1, allocate to each
point a unit area in an equivariant measurable way.

A rule for such an allocation will be called a (factor) allocation.

An application: an allocation gives rise to a shift-coupling between
the point process and its Palm version. Thorisson
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Stable allocation rule

One can define an allocation rule similarly to stable matching:
Let the centers simultaneously start growing balls, so that at time
t all balls have radius t. Let a center capture a point, if this is the
first center to reach it, and the center has not captured a point set
of volume 1 yet.
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Find allocations of optimal tail

Similarly to matchings: find an optimal allocation rule, where the
diameter of the cells decays as fast as possible.

Question(Holroyd-Peres, ’05) What allocation rule does produce
the fastest possible decay for P0[diam(ψ(0) ∪ {0}) ≥ R]?

Just like for matchings, the stable allocation is far from optimal.
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Various allocation rules got proposed...

Krikun, ’07
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Various allocation rules got proposed...

Gravitational allocation, Chatterjee, Peled, Peres, Romik, ’10
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Theorem

(Markó-T., ’11) For d ≥ 3 there exists an allocation rule for the
P.p.p. in Rd that gives

P0[diam(cell(0)) > r ] ≤ c0exp(−crd).

So: there is an allocation that achieves the potential optimum, up
to the constants.

Is there any connection to the matching problem? Seemingly yes,
but it was not clear, how...

In the finite setting there is a direct connection, as observed by
Ajtai, Komlós and Tusnády.
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But in the setup of point processes, the graph that we would
obtain is infinite, and we require the matching to be a factor! So
we need some other version of Hall’s criterion, if any.
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Graphings

Definition: Given (Ω,B) Borel σ-algebra, a graph G on Ω is a
Borel graph if its edge set is Borel in the product σ-algebra.
Endow (Ω,B) with a probability measure µ. G is a graphing if∫

A
degB(x)dµ(x) =

∫
B
degA(x)dµ(x)

for every A,B ∈ B.

Example 1 A fixed finite graph with a uniform random vertex.

∑
x∈A

degB(x) =
∑
x∈B

degA(x)
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Example 2 Let Ω = S be a unit circle, µ uniform on S . Fix
α ∈ [0, 2π]. Let x , y ∈ S be adjacent if rotation by ±α takes x to
y .

Example 3 “Tarski’s circle squaring”, equidecomposition questions

Note:
In Example 2, if α is irrational to π then there is no measurable
perfect matching in this graphing (by ergodicity).
Even though Hall’s criterion holds!
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Example 4

ω1 and ω2 discrete point sets in Rd , 0 ∈ ω1 ∪ ω2.
Ai (x) := the cell of x ∈ ωi by some allocation rule for ωi .

G (ω1, ω2) - a bipartite graph on
ω1 ∪ ω2, where x and y are ad-
jacent if A1(x) ∩ A2(y) ̸= ∅.

Ω = {G (ω1, ω2)}.

G (ω1, ω2) and G (ω′
1, ω

′
2) are adjacent if

there is an isometry ϕ of Rd with ϕ(ω1) = ω′
1, ϕ(ω2) = ω′

2,

such that 0(∈ ω1 ∪ ω2) and ϕ
−1(ω′

1) are adjacent in
G (ω1, ω2).
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A fractional (perfect) matching on a graph G is a function
ϕ : E (G ) → [0, 1] where

∑
w∼v ϕ({v ,w}) = 1 for every v ∈ V (G ).

An equivalent of Hall’s criterion is the existence of a fractional
matching.

Theorem

(Bowen-Kun-Sabok, ’21) Let G be a hyperfinite, one-ended
bipartite graphing. Suppose that G has a measurable a.e. positive
fractional perfect matching. Then it has a measurable perfect
matching as well.

Definitions:

One-ended graphing – every component has one end, i.e., cannot
be separated into ≥ 2 infinite components by a finite set.

Hyperfinite – for every ε > 0 there is an A ⊂ Ω of measure < ε
such that every component induced by Ω \ A is finite.
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Recall:

Theorem

(T., ’21) For d ≥ 3 there exists a factor perfect matching between
two P.p.p. in Rd that gives

P0[X > r ] ≤ c0exp(−crd),

where X is the distance of 0 from its pair.

To prove it: Consider the graphing that we just defined with the
optimal allocation rule by Markó-T., and show that the
assumptions of the Bowen-Kun-Sabok Theorem hold. The
resulting perfect matching will have similar tail as the allocation.
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Use the graphing defined before. Every degree is finite, by a
property of the optimal allocation rule used.

Define the weight of edge {ω, ω′} as Leb(A(0) ∩A(v)), where
A(x) := is the cell of a point.
This defines a measurable fractional perfect matching of the
graphing.
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To prove one-endedness:
Note: the component of almost every point of the graphing is
isomorphic to the graph in the respective configuration. So we
need to prove that these graphs are one-ended.

Suppose not: then one could also find a finite set of blue points
whose removal from the configuration graphs results in ≥ 2 infinite
components.

Then there would be a finite collection of (bounded) allocation
cells whose removal from Rd results in more than one unbounded
component. This is not possible.
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Hyperfiniteness

We are looking for a subset of density < ε that splits the graph
into finite pieces. We will search for it in the two configuration
point sets in parallel.
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Hyperfiniteness

First remove cells that have diameter > r .
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Hyperfiniteness

Then take a factor partition of Rd to convex pieces, each of which
contains a ball of radius N (N >> r).

Remove cells whose closure intersects the boundary ∂P of some
piece P, from both configurations.
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Hyperfiniteness

The retained cells have

1 have diameter ≤ r ,

2 they have some point outside of r -neighborhood of ∪∂P.
So all the retained cells are disjoint from ∪∂P. Hence all the
components in G induced by the retained cells (in the two classes
of bipartition) are finite.

Both the “density” of (1) and (2) is arbitrarily close to 1 if r and
N are large enough. ⋄
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Thank you!
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Optimal land division in a box

Let n points be uniformly independently distributed in a cube of
volume n. Assign a volume 1 cell to each of them, partitioning the
cube. Make the average diameter of cells minimal.

Optimal solution was given by Ajtai-Komlós-Tusnády , the “AKT
algorithm”.

The average diameter is log1/2 n for dimension 2, and finite for
dimension ≥ 3.
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The AKT algorithm
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Ádám Timár Poisson factor matchings of optimal tail via matchings in graphings



The AKT algorithm
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Sketch of proof for the optimal allocation

Theorem

(Markó-T., ’11) For d ≥ 3 there exists an allocation rule for the
P.p.p. in Rd that gives

P0[diam(cell(0)) > r ] ≤ cexp(−crd).

Sketch of proof: Fix the point configuration ω.

Given n ∈ Z+, v ∈ [0, 2n)d , partition Rd to the cubes of v + 2nZd .
For each of these cubes, allocate cells to the points of ω in the
cube, using the AKT algorithm. For n large, most cell sizes are
close to 1.

For x ∈ ω, let fn,v (x , .) be the indicator fuction of the cell of x .
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Sketch of proof for the optimal allocation

Consider fn(x , .) =
1
2dn

∫
[0,2n)d fn,v (x , .)dv .

Claim:
∫
Rd fn is close to 1.

By an analysis of the AKT algorithm, supp(fn) has good tail.

There exist an L1-limit f ω,x for the fn(x , .).

Claim: supp(f ω,x) has good tail,
∫
Rd f

ω,x is 1, and
∑

x∈ω f ω,x = 1
almost everywhere.

The family {f ω,x : x ∈ ω} was defined as a factor.

We obtain an allocation by suitably replacing the f ω,x by indicator
functions of sets within supp(f ω,x). ⋄
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